Effects of canagliflozin on growth and metabolic reprograming in hepatocellular carcinoma cells: Multi-omics analysis of metabolomics and absolute quantification proteomics (iMPAQT)

PLoS One. 2020 Apr 28;15(4):e0232283. doi: 10.1371/journal.pone.0232283. eCollection 2020.

Abstract

Aim: Metabolic reprograming is crucial in the proliferation of hepatocellular carcinoma (HCC). Canagliflozin (CANA), a sodium-glucose cotransporter 2 (SGLT2) inhibitor, affects various metabolisms. We investigated the effects of CANA on proliferation and metabolic reprograming of HCC cell lines using multi-omics analysis of metabolomics and absolute quantification proteomics (iMPAQT).

Methods: The cells were counted 72 hours after treatment with CANA (10 μM; n = 5) or dimethyl sulfoxide (control [CON]; n = 5) in Hep3B and Huh7 cells. In Hep3B cells, metabolomics and iMPAQT were used to evaluate the levels of metabolites and metabolic enzymes in the CANA and CON groups (each n = 5) 48 hours after treatment.

Results: Seventy-two hours after treatment, the number of cells in the CANA group was significantly decreased compared to that in the CON group in Hep3B and Huh7 cells. On multi-omics analysis, there was a significant difference in the levels of 85 metabolites and 68 metabolic enzymes between the CANA and CON groups. For instance, CANA significantly downregulated ATP synthase F1 subunit alpha, a mitochondrial electron transport system protein (CON 297.28±20.63 vs. CANA 251.83±22.83 fmol/10 μg protein; P = 0.0183). CANA also significantly upregulated 3-hydroxybutyrate, a beta-oxidation metabolite (CON 530±14 vs. CANA 854±68 arbitrary units; P<0.001). Moreover, CANA significantly downregulated nucleoside diphosphate kinase 1 (CON 110.30±11.37 vs. CANA 89.14±8.39 fmol/10 μg protein; P = 0.0172).

Conclusions: We found that CANA suppressed the proliferation of HCC cells through alterations in mitochondrial oxidative phosphorylation metabolism, fatty acid metabolism, and purine and pyrimidine metabolism. Thus, CANA may suppress the proliferation of HCC by regulating metabolic reprograming.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Apoptosis / drug effects
  • Canagliflozin / pharmacology*
  • Carcinoma, Hepatocellular / drug therapy*
  • Carcinoma, Hepatocellular / metabolism
  • Carcinoma, Hepatocellular / pathology
  • Cell Cycle / drug effects
  • Cell Line, Tumor
  • Cell Proliferation / drug effects
  • Fatty Acids / metabolism
  • Humans
  • Liver Neoplasms / drug therapy*
  • Liver Neoplasms / metabolism
  • Liver Neoplasms / pathology
  • Metabolomics
  • Models, Biological
  • Oxidative Phosphorylation / drug effects
  • Proteomics
  • Sodium-Glucose Transporter 2 / metabolism
  • Sodium-Glucose Transporter 2 Inhibitors / pharmacology*

Substances

  • Fatty Acids
  • SLC5A2 protein, human
  • Sodium-Glucose Transporter 2
  • Sodium-Glucose Transporter 2 Inhibitors
  • Canagliflozin

Grants and funding

This research was supported by Japan Agency for Medical Research and Development (AMED) under Grant Number JP19fk0210040.