Redox Switchable Polydopamine-Modified AFM-SECM Probes: A Probe for Electrochemical Force Spectroscopy

Anal Chem. 2020 Jun 16;92(12):8404-8413. doi: 10.1021/acs.analchem.0c00995. Epub 2020 May 19.

Abstract

Polydopamine (PDA) has high potential in biorelevant applications as a versatile thin film material, e.g., as adhesive coating for cell immobilization or for sensing applications due to the plethora of functional groups. In this study we present the modification of conductive colloidal atomic force-scanning electrochemical microscopy (AFM-SECM) probes with electrochemically deposited PDA resulting in functional probes for quantitative electrochemical adhesion studies. Surface functionality of PDA can be altered by oxidation or reduction of functional groups applying an appropriate potential to the PDA-modified AFM-SECM probe, thereby enabling adhesion measurements under potential control. This facilitates probing specific interactions of surface groups present in PDA with various surfaces of different wettabilities. The versatility of such switchable AFM-SECM probes is demonstrated for electrochemical force spectroscopic studies at model samples such as plasma-treated gold substrates, hydrophobic or hydrophilic self-assembled monolayers, and for adhesion measurements of bacteria in dependence of altered surface charges of the colloidal probe. The maximum obtained adhesion force of a positively polarized PDA-modified AFM-SECM probe was 6.2 ± 2.2 nN, and it was about 50% less (i.e., 2.6 ± 1.1 nN) for a negatively polarized probe at a hydrophilic OH-terminated gold surface. In situ control of the active surface groups enabled investigations on the influence of surface charges on adhesion. Furthermore, plateaus of constant force were observed, which are a characteristic of polymer structures. Finally, electrochemical force measurements with switchable probes were used for the first time during adhesion studies of bacterial cells (i.e., Pseudomonas fluorescens). Positively biased PDA-coated colloidal probes revealed adhesion forces of 6.0 ± 1.1 nN, whereas significantly reduced adhesion forces 1.1 ± 0.7 nN were observed for negatively biased PDA-modified colloidal probes.

MeSH terms

  • Electrochemical Techniques*
  • Indoles / chemistry*
  • Microscopy, Atomic Force
  • Microscopy, Electrochemical, Scanning
  • Oxidation-Reduction
  • Particle Size
  • Polymers / chemistry*
  • Surface Properties

Substances

  • Indoles
  • Polymers
  • polydopamine