rGO modified nanoplate-assembled ZnO/CdO junction for detection of NO2

J Hazard Mater. 2020 Jul 15:394:121832. doi: 10.1016/j.jhazmat.2019.121832. Epub 2019 Dec 16.

Abstract

The triadic composite of ZnO/CdO heterojunction decorated with reduced graphene oxide (rGO) was prepared using a one-step hydrothermal method. The characterizations of morphology, structure and composition to the composite were undertaken by XRD, Raman, SEM, TEM, XPS, UV-vis spectra. The sensing experimental data indicate that the highest response of the ZnO/CdO/rGO (1.0 wt%) composite to ppm-level NO2 is 8 times and 2 times higher than pure ZnO and ZnO/CdO junction, respectively. The composite not only exhibits fast response time and recovery time, high response, but also reveals outstanding stability and repeatability at an operating temperature of 125 °C. The sensing mechanism also has been discussed in detail in the work. The enhancement in gas sensing properties is credited to the development of ZnO/CdO heterojunction and the decoration of rGO with high conductivity. The logarithm of sensitivity in the range of 0.4-2.4 ppm NO2 shows good linear dependence, indicating that the composite based sensor can be used to quantificationally detect low concentration of NO2.

Keywords: Gas sensor; Graphene; NO(2); ZnO/CdO; rGO.

Publication types

  • Research Support, Non-U.S. Gov't