Community composition and correlations between bacteria and algae within epiphytic biofilms on submerged macrophytes in a plateau lake, southwest China

Sci Total Environ. 2020 Jul 20:727:138398. doi: 10.1016/j.scitotenv.2020.138398. Epub 2020 Apr 17.

Abstract

Epiphytic biofilms are complex matrix-enclosed communities comprising large numbers of bacteria and algae, which play an important role in the biogeochemical cycles in aquatic systems. However, little is known about the correlations that occur between these communities or the relative impact of environmental factors on their composition. In this study, epiphytic biofilms on three different aquatic plants were sampled in a typical plateau lake (Caohai, southwest China) in July and November of 2018. Bacterial diversity was assessed using Miseq sequencing approaches and algal communities were assessed using light microscopy. Gammaproteobacteria (54.64%), Bacteroidetes (17.50%) and Firmicutes (13.99%) were the dominant bacterial taxa and Chlorophyta (47.62%), Bacillariophyta (28.57%) and Euglenophyta (19.05%) were the dominant algae. The alpha diversity values of the epiphytic bacterial and algal communities were greater during the macrophyte decline period (November) than during the growth period (July). Microbial community composition was significantly affected by abiotic factors (water temperature, NH4+, pH or TP) and biotic factors (algae or bacteria). Interestingly, in July and November, the epiphytic algal community dissimilarity was stronger than that observed for bacterial community dissimilarity, suggesting that bacterial community dissimilarity may increase more slowly with environmental change than algal community dissimilarity. Furthermore, association network analysis revealed complex correlations between algal biomass and bacteria phylotype, and that 67.83% of correlations were positive and 32.17% were negative. This may indicate that facilitative correlations between algae and bacteria are predominant in epiphytic biofilms. These results provide new information on algal-bacterial correlations as well as the possible mechanisms that drive variations in the microbial community in epiphytic biofilms in freshwater lakes.

Keywords: Algal community; Association network analysis; Bacterial community; Epiphytic biofilms; Submerged macrophytes.

MeSH terms

  • Bacteria
  • Biofilms
  • China
  • Lakes*
  • Microbiota*