Genes encoding light-harvesting chlorophyll a/b-binding proteins in papaya (Carica papaya L.) and insight into lineage-specific evolution in Brassicaceae

Gene. 2020 Jul 20:748:144685. doi: 10.1016/j.gene.2020.144685. Epub 2020 Apr 22.

Abstract

Light-harvesting chlorophyll a/b-binding (Lhc) proteins comprise a plant-specific superfamily involved in photosynthesis and stress responses. Despite their importance, little is known in papaya (Carica papaya), an economically important tree fruit crop as well as a species close to the model plant arabidopsis (Arabidopsis thaliana). This study reports a first genome-wide analysis of Lhc superfamily genes in papaya, and a total of 28 members that represent four defined families or 26 orthologous groups were identified from the papaya genome. The superfamily number is comparable to 28 or 27 reported in castor (Ricinus communis) and jatropha (Jatropha curcas), respectively, two Euphorbiaceous plants also without any recent whole-genome duplication (WGD), but relatively less than 35, 34, 32, 32, 37, 30 or 32 present in cassava (Manihot esculenta), arabidopsis, A. lyrata, A. halleri, Capsella rubella, C. grandiflora, and Eutrema salsugineum, respectively, representative species having experienced one or two recent WGDs. Local duplication was shown to play a predominant role in gene expansion in papaya, castor, and jatropha, which is only confined to the Lhcb1 group. By contrast, WGD plays a relatively more important role in cassava, arabidopsis, and other Brassicaceous plants. Further comparison of Brassicaceous plants revealed that loss of the SEP6 group in arabidopsis is lineage-specific, occurring sometime after papaya-arabidopsis divergence but before the radiation of Brassicaceous plants. Transcriptional profiling revealed a leaf-preferential expression pattern of most CpLhc superfamily genes and their transcript levels were markedly regulated by three abiotic stresses, i.e., mimicking drought, cold, and high salt. These findings not only facilitate further functional studies in papaya, but also improve our knowledge on lineage-specific evolution of this special gene superfamily in Brassicaceae.

Keywords: Abiotic stress; Best reciprocal hit; Brassicaceae; Carica papaya; Drought Cold Salt; Evolution; Orthologous group.

MeSH terms

  • Brassicaceae / genetics*
  • Carica / metabolism*
  • Chlorophyll Binding Proteins / genetics*
  • Evolution, Molecular*
  • Gene Expression Profiling
  • Plant Proteins / genetics*

Substances

  • Chlorophyll Binding Proteins
  • Plant Proteins