Anomalously High Proton Conduction of Interfacial Water

J Phys Chem Lett. 2020 May 7;11(9):3623-3628. doi: 10.1021/acs.jpclett.0c00910. Epub 2020 Apr 24.

Abstract

Water at the solid-liquid interface exhibits an anomalous ionic conductivity and dielectric constant compared to bulk water. Both phenomena still lack a detailed understanding. Here, we report radio-frequency measurements and analyses of the electrodynamic properties of interfacial water confined in nanoporous matrices formed by diamond grains of various sizes, ranging from 5 nm to 0.5 μm in diameter. Contrary to bulk water, the charge-carrying protons/holes in interfacial water are not mutually screened, allowing for higher mobility in the external electric field. Thus, the protonic conductivity reaches a maximum value, which can be 5 orders of magnitude higher than that of bulk water. Our results aid in the understanding of physical and chemical properties of water confined in porous materials and pave the way to the development of new type of highly efficient proton-conductive materials for applications in electrochemical energy systems, membrane separations science, and nanofluidics.