Principles of Intrinsic Motor Cortex Connectivity in Primates

J Neurosci. 2020 May 27;40(22):4348-4362. doi: 10.1523/JNEUROSCI.0003-20.2020. Epub 2020 Apr 23.

Abstract

The forelimb representation in motor cortex (M1) is an important model system in contemporary neuroscience. Efforts to understand the organization of the M1 forelimb representation in monkeys have focused on inputs and outputs. In contrast, intrinsic M1 connections remain mostly unexplored, which is surprising given that intra-areal connections universally outnumber extrinsic connections. To address this knowledge gap, we first mapped the M1 forelimb representation with intracortical microstimulation (ICMS) in male squirrel monkeys. Next, we determined the connectivity of individual M1 sites with ICMS + intrinsic signal optical imaging (ISOI). Every stimulation site activated a distinctive pattern of patches (∼0.25 to 1.0 mm radius) that we quantified in relation to the motor map. Arm sites activated patches that were mostly in arm zones. Hand sites followed the same principle, but to a lesser extent. The results collectively indicate that preferential connectivity between functionally matched patches is a prominent organizational principle in M1. Connectivity patterns for a given site were conserved across a range of current amplitudes, train durations, pulse frequencies, and microelectrode depths. In addition, we found close correspondence in somatosensory cortex between connectivity that we revealed with ICMS+ISOI and connections known from tracers. ICMS+ISOI is therefore an effective tool for mapping cortical connectivity and is particularly advantageous for sampling large numbers of sites. This feature was instrumental in revealing the spatial specificity of intrinsic M1 connections, which appear to be woven into the somatotopic organization of the forelimb representation. Such a framework invokes the modular organization well-established for sensory cortical areas.SIGNIFICANCE STATEMENT Intrinsic connections are fundamental to the operations of any cortical area. Surprisingly little is known about the organization of intrinsic connections in motor cortex (M1). We addressed this knowledge gap using intracortical microstimulation (ICMS) concurrently with intrinsic signal optical imaging (ISOI). Quantifying the activation patterns from dozens of M1 sites allowed us to uncover a fundamental principle of M1 organization: M1 patches are preferentially connected with functionally matched patches. Relationship between intrinsic connections and neurophysiological map is well-established for sensory cortical areas, but our study is the first to extend this framework to M1. Microstimulation+imaging opened a unique possibility for investigating the connectivity of dozens of tightly spaced M1 sites, which was the linchpin for uncovering organizational principles.

Keywords: effective connectivity; intrinsic signal optical imaging; microstimulation; motor cortex; motor map; somatosensory cortex.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Arm / innervation
  • Arm / physiology
  • Connectome*
  • Haplorhini
  • Male
  • Motor Cortex / cytology
  • Motor Cortex / physiology*
  • Neurons / physiology
  • Optical Imaging