Dynamics of Different Buffer Systems in Slurries Based on Time and Temperature of Storage and Their Visualization by a New Mathematical Tool

Animals (Basel). 2020 Apr 21;10(4):724. doi: 10.3390/ani10040724.

Abstract

Slurry treatments such as acidification and alkalization have proven to be promising solutions to reduce gaseous emission produced by farm animals. The optimization of these technologies requires detailed knowledge of how and to what extent the buffer capacities in slurries will change during storage under the influence of different temperatures, as this may save resources needed to adjust a targeted pH value. Fresh slurries from dairy cows, fattening pigs and sows were collected and stored for 12 weeks under either cold (4.7 ± 1.1 °C) or warm (23.6 ± 2.1 °C) conditions to perform titrations in acidic and alkaline milieu at regular intervals. Based on these results, we successfully verified a new mathematical tool that we have developed to be able to calculate and visualize the most important buffer systems found in the analyzed slurries. Our experimental results showed a strong correlation between the degradation of the volatile fatty acid (VFA) buffer and the emergence of the carbonate buffers, i.e., the HCO3- and the CO32- buffer. Furthermore, a drop in the pH value caused by enhanced microbial production of VFAs can be mitigated by the presence of the NH3 buffer. In conclusion, we demonstrated that the buffers cannot be considered individually but must be interpreted as a complex and interacting system.

Keywords: acidification; alkalization; amount of acid; animal manure; buffer capacity; buffer curve; slurry; titration; volume of alkaline; waste management.