The Effect of Post-Weld Hot-Rolling on the Properties of Explosively Welded Mg/Al/Ti Multilayer Composite

Materials (Basel). 2020 Apr 19;13(8):1930. doi: 10.3390/ma13081930.

Abstract

The paper describes an investigation of an explosively welded Mg/Al/Ti multilayer composite. Following the welding, the composite was subjected to hot-rolling in three different temperatures: 300 °C, 350 °C and 400 °C, with a total relative strain of 30%. The rolling speed was 0.2 m/s. The investigation of the composite properties involves microhardness analysis and mini-specimen tensile tests of the joints. The composite Mg/Al and Al/Ti bonds in the as-welded state and after rolling in 400 °C were subjected to microstructure analysis using scanning electron (SEM) and transmission electron microscopy (TEM). In the Al/Ti interface, the presence of melted zones with localized intermetallic precipitates has been reported in the as-welded state, and it has been stated that hot-rolling results in precipitation of intermetallic particles from the melted zone. The application of the hot-rolling process causes the formation of a continuous layer in the Mg/Al joint, consisting of two intermetallic phases, Mg2Al3 (β) and Mg17Al12 (γ).

Keywords: composite; explosive welding; hot rolling; intermetallic; light alloys; microstructure.