Pressure effect on the magnetoresistivity of topological semimetal RhSn

J Phys Condens Matter. 2020 Apr 23;32(35):355601. doi: 10.1088/1361-648X/ab8c8b. Online ahead of print.

Abstract

RhSn is a topological semimetal with chiral fermions. At ambient pressure, it exhibits large positive magnetoresistance (MR) and field-induced resistivity upturn at low temperatures. Here we report on the electrical transport properties of RhSn single crystal under various pressures. We find that with increasing pressure the temperature-dependent resistivity ρ(T) of RhSn varies minutely, whereas the value of MR at low temperatures decreases significantly. The ρ(T) data was fitted with the Bloch-Grüneisen model and the Debye temperature was extracted. Analyses of the nonlinear Hall conductivity with two-band model indicate that the carrier concentrations do not change significantly with pressure, but the mobilities for both electron and hole carriers are reduced monotonically, which can account for the significant reduction of MR under high pressures.