Protection by vitamin D against high-glucose-induced damage in retinal pigment epithelial cells

Exp Cell Res. 2020 Jul 1;392(1):112023. doi: 10.1016/j.yexcr.2020.112023. Epub 2020 Apr 20.

Abstract

Diabetic retinopathy (DR) is a diabetes-associated complication characterized by irreversible deterioration of the microvessels within the retina, leading subsequently to severe retinal damage and vision loss. Vitamin D (VITD), a steroid hormone, plays multiple physiological functions in cellular homeostasis. Deficiency of VITD has been suggested to be associated with DR. To study the potential protective function of VITD in DR, high-glucose-treated ARPE-19 cells and STZ-induced diabetic mice were used as in vitro and in vivo models. The protective effects of VITD were assessed based on the changes of expression of antioxidant enzymes and cytokines in high-glucose-treated retinal pigment epithelial (RPE) cells and in the retina and RPE of diabetic and VITD-treated diabetic mice. The present study demonstrated that exposure to a high level of glucose caused upregulation of pro-inflammatory cytokines and a decrease in anti-oxidant enzyme expression in both in vitro and in vivo models. VITD treatment increased cell viability, reduced reactive oxygen species (ROS) production and caspase-3/7 activities in high-glucose-treated RPE cells. Our data suggest that VITD can protect the retina and RPE from high-glucose-induced oxidative damage and inflammation.

Keywords: Diabetic retinopathy; Inflammation; Oxidative stress; Protection; Vitamin D.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Line
  • Cell Survival / drug effects
  • Cytoprotection / drug effects*
  • Diabetes Mellitus, Experimental / chemically induced
  • Diabetes Mellitus, Experimental / complications
  • Diabetes Mellitus, Experimental / drug therapy
  • Diabetes Mellitus, Experimental / pathology
  • Diabetes Mellitus, Type 1 / chemically induced
  • Diabetes Mellitus, Type 1 / complications
  • Diabetes Mellitus, Type 1 / drug therapy
  • Diabetes Mellitus, Type 1 / pathology
  • Diabetic Retinopathy / pathology
  • Diabetic Retinopathy / prevention & control
  • Dose-Response Relationship, Drug
  • Epithelial Cells / drug effects*
  • Epithelial Cells / physiology
  • Glucose / adverse effects*
  • Glucose / pharmacology
  • Humans
  • Mice
  • Mice, Inbred C57BL
  • Oxidative Stress / drug effects
  • Protective Agents / pharmacology
  • Protective Agents / therapeutic use
  • Reactive Oxygen Species / metabolism
  • Retinal Pigment Epithelium / drug effects*
  • Retinal Pigment Epithelium / physiology
  • Streptozocin
  • Vitamin D / pharmacology*
  • Vitamin D / therapeutic use

Substances

  • Protective Agents
  • Reactive Oxygen Species
  • Vitamin D
  • Streptozocin
  • Glucose