Isolated Ni Atoms Dispersed on Ru Nanosheets: High-Performance Electrocatalysts toward Hydrogen Oxidation Reaction

Nano Lett. 2020 May 13;20(5):3442-3448. doi: 10.1021/acs.nanolett.0c00364. Epub 2020 Apr 27.

Abstract

Designing low-cost, high-efficiency, platinum-free electrocatalysts for the hydrogen oxidation reaction (HOR) in an alkaline electrolyte is of great importance for the development of anion exchange membrane fuel cells. Herein, we report a novel HOR catalyst, RuNi1, in which Ni is atomically dispersed on the Ru nanocrystals. To note, the as-prepared RuNi1 catalyst exhibits excellent catalytic activity and stability for HOR in alkaline media, which is superior to those of Ru-Ni bimetallic nanocrystals, pristine Ru, and commercial Pt/C catalysts. Density functional theory (DFT) calculations suggest that isolation of Ni atoms on Ru nanocrystals not only optimizes the hydrogen-binding energy but also decreases the free energy of water formation, thus leading to excellent electrocatalytic activity of RuNi1 catalyst. The results show that engineering a catalyst at an atomic level is highly effective for rational design of electrocatalysts with high performance.

Keywords: Atomically dispersed; Ru nanocrystals; electrocatalysis; hydrogen oxidation reaction.