Supercooled Low-Entropy Water Clusters

J Phys Chem Lett. 2020 May 7;11(9):3667-3671. doi: 10.1021/acs.jpclett.0c00631. Epub 2020 Apr 26.

Abstract

The properties of low-entropy water clusters and small bulk water domains in a hydrophobic solvent over a wide temperature range (235-333 K), including supercooling temperatures, were investigated. 1H nuclear magnetic resonance spectroscopy showed singularity temperatures at ∼300, 250, 235, and 225 K. We proposed a model to understand these singularity temperatures in which the low-entropy water cluster is a locally favored tetrahedral structure (LFTS) and the small bulk water domain contains a mixture of disordered normal-liquid structure (DNLS) and LFTS. The model showed that the LFTS and DNLS populations change with applied temperature. Above ∼300 K, all local water structures become a DNLS. The population of LFTS increases with cooling and becomes dominant below ∼250 K. At ∼225 K, all local water structures converge to LFTS. The phase-transition rate of the low-entropy water clusters and small bulk water domains increases significantly at ∼235 K. The phase transition of the low-entropy water clusters showed primary ice nucleation. Low-entropy water clusters in a hydrophobic solvent are a unique water morphology and a probe material for water investigations.