Low temperature and high light dependent dynamic photoprotective strategies in Arabidopsis thaliana

Physiol Plant. 2020 Sep;170(1):93-108. doi: 10.1111/ppl.13111. Epub 2020 May 4.

Abstract

Arabidopsis thaliana has been recognized as a chilling tolerant species based on analysis of resistance to low temperature stress, however, the mechanisms involved in this tolerance are not yet clarified. The low temperature-induced effects are exacerbated when plants are exposed to low temperatures in the presence of high light irradiance but the experimental data on the impact of light intensity during cold stress and its influence during recovery from stress are rather limited. The main objective of this study was to re-examine the photosynthetic responses of A. thaliana plants to short term (6 days) low temperature stress (12/10°C) under optimal (150 μmol m-2 s-1 ) and high light (500 μmol m-2 s-1 ) intensity and the subsequent recovery from the stress. Simultaneous measurements of the in vivo and in vitro functional performance of both photosystem II (PSII) and photosystem I (PSI), as well as, net photosynthesis, low temperature (77 K) chlorophyll fluorescence and immunoblot analysis of the relative abundance of PSII and PSI reaction center proteins were used to evaluate the role of light in the development of possible protective mechanisms during low temperature stress and the consequent recovery from exposure to low temperature and different light intensities. The results presented clearly suggest that Arabidopsis plants can employ a number of highly dynamic photoprotective strategies depending on the light intensity. These strategies include one based on LHCII quenching and two other quenching mechanisms localized within the PSII and PSI reaction centers, which are all expressed to different extent depending on the severity of the photoinhibitory treatments under low temperature stress conditions.

MeSH terms

  • Arabidopsis*
  • Chlorophyll
  • Cold Temperature
  • Photosynthesis
  • Photosystem I Protein Complex
  • Photosystem II Protein Complex
  • Temperature

Substances

  • Photosystem I Protein Complex
  • Photosystem II Protein Complex
  • Chlorophyll