Assessment of rainfall erosivity (R-factor) during 1986-2015 across Nepal: a step towards soil loss estimation

Environ Monit Assess. 2020 Apr 18;192(5):293. doi: 10.1007/s10661-020-8239-9.

Abstract

Rainfall is a main cause of soil erosion which varies spatially and temporarily. R-factor is an erosive power of the rainfall that is responsible for soil detachment and subsequent displacement. Mathematically, it is expressed as a sum of the product of kinetic energy and maximum 30-min rain intensity. A precise assessment of R-factor needs higher temporal resolution rainfall data (sub-hourly) for a period of several years, which is rarely available. Many empirical approaches are used to predict R-factor as a function of mean monthly and annual rainfall amount. In this study, we used Loureiro and Countinho (Journal of Hydrology 250:12-18, 2001) approximation approach to estimate R-factor and explore its intra-annual variability using 30 years (1986-2015) of daily rainfall data from 280 stations distributed across Nepal. This study employs different intra-annual variability indices and calculates erosivity density (ED) and weighted erosivity density (WED). The country average mean annual R-factor (MAR), annual ED, and WED are found to be 9434.8 MJ mm ha-1 h-1 year-1, 4.39 MJ ha-1 h-1,and 1.61 MJ ha-1 h-1, respectively. On a monthly scale, July is the highest erosive month followed by August (> 2000 MJ mm ha-1 h-1 month-1). Likewise, November is the lowest erosive month followed by December (~ 50 MJ mm ha-1 h-1 month-1). Spatial distributions of these indices show clear delineations of areas with different erosivity patterns at different time of the year. In addition, this study explores inter-annual variation, temporal evolution, and trend estimation of R-factors over the country (for the first time). Significant rising trends are observed in the western region of the country. We found that the mean soil erosion for Nepal is estimated at 21.01 ton ha-1 year-1. The smallest R-factors are observed in the north-western region of the country and the maximum values are observed at mid hills and southern plains of the country. Our study could be an initial but important step for effective soil conservation, land use planning, and agricultural production.

Keywords: Nepal; Rainfall erosivity; Soil erosion; Variability.

MeSH terms

  • Environmental Monitoring
  • Nepal
  • Rain
  • Soil*
  • Water Movements*

Substances

  • Soil