Cascaded Correlation Refinement for Robust Deep Tracking

IEEE Trans Neural Netw Learn Syst. 2021 Mar;32(3):1276-1288. doi: 10.1109/TNNLS.2020.2984256. Epub 2021 Mar 1.

Abstract

Recent deep trackers have shown superior performance in visual tracking. In this article, we propose a cascaded correlation refinement approach to facilitate the robustness of deep tracking. The core idea is to address accurate target localization and reliable model update in a collaborative way. To this end, our approach cascades multiple stages of correlation refinement to progressively refine target localization. Thus, the localized object could be used to learn an accurate on-the-fly model for improving the reliability of model update. Meanwhile, we introduce an explicit measure to identify the tracking failure and then leverage a simple yet effective look-back scheme to adaptively incorporate the initial model and on-the-fly model to update the tracking model. As a result, the tracking model can be used to localize the target more accurately. Extensive experiments on OTB2013, OTB2015, VOT2016, VOT2018, UAV123, and GOT-10k demonstrate that the proposed tracker achieves the best robustness against the state of the arts.