Experimental Investigation on the Mechanical Properties of Self-Compacting Concrete under Uniaxial and Triaxial Stress

Materials (Basel). 2020 Apr 13;13(8):1830. doi: 10.3390/ma13081830.

Abstract

To explore the influence of fly ash (FA) and silica fume (SF) on the mechanical properties of self-compacting concrete (SCC) under uniaxial and triaxial, the compressive strength test, splitting strength test, ultrasonic testing test, and triaxial test were performed in this paper. The results show that the 3 days compressive strength and splitting strength of SCC decreased with the increase of FA substitution rate. The 28 days, 56 days, and 91 days compressive strength and splitting strength of SCC increased first and then decreased with the increase of FA substitution rate. The peak stress and peak strain of SCC gradually increased with the increase of confining pressure. The peak stress and strain of SCC increased first and then decreased with the increase of FA substitution rate. Moreover, the relationship models between compressive strength and splitting strength, between compressive strength and amplitude, between peak stress, peak strain and confining pressure under different FA substitution rates were proposed. As a conclusion, the addition of SF can increase the strength of SCC obviously. Under uniaxial stress, SCC failure mode is splitting failure, under triaxial stress, SCC failure mode is shear failure. Based on the Mohr-Coulomb strength theory, the failure criterion of SCC with FA and SF was discussed.

Keywords: failure criterion; fly ash; mechanical properties; self-compacting concrete; triaxial test.