Is Site-Specific Pasta a Prospective Asset for a Short Supply Chain?

Foods. 2020 Apr 10;9(4):477. doi: 10.3390/foods9040477.

Abstract

In the 2011-2012 season, variable-rate nitrogen (N) fertilization was applied two times during durum wheat vegetative growth in three field areas which differed in soil fertility in northern Italy. The quality traits of the mono-varietal pasta obtained from each management zone were assessed in view of site-specific pasta production for a short supply chain. To this purpose, semolina from cv. Biensur obtained from management zones with different fertility treated with N at variable rate was tested in comparison with a commercial reference (cv. Aureo) to produce short-cut pasta. Biensur semolina demonstrated to have technological characteristics positively correlated with the low-fertility zones treated with high N doses (200 and 200+15 kg/ha) and, to a lesser extent, with the high-soil-fertility zones (130 and 130 + 15 kg/ha of N). The lower quality parameters were obtained for pasta produced with wheat from medium-fertility zones, independently of the N dose applied. The derived pasta obtained from the low-fertility zones treated with high N doses had cooking and sensory properties comparable to those of pasta obtained using the reference cv. Aureo. These results are explained by the higher amounts of gluten proteins and by a higher glutenin/gliadin ratio in semolina, which are indicators of technological quality. Overall, the results indicate that segregation of the grain at harvest led to the production of semolina with higher protein content and, hence, to a higher pasta quality. Therefore, site-specific pasta could be a potential asset for a short supply chain, aiming to improve traceability and environmental and economic sustainability.

Keywords: durum wheat; pasta quality; pasta short chain; precision harvest.