Experimental and Theoretical Investigation on Phase Formation and Mechanical Properties in Cr-Co-Ni Alloys Processed Using a Novel Thin-Film Quenching Technique

ACS Comb Sci. 2020 May 11;22(5):232-247. doi: 10.1021/acscombsci.9b00170. Epub 2020 Apr 28.

Abstract

The Cr-Co-Ni system was studied by combining experimental and computational methods to investigate phase stability and mechanical properties. Thin-film materials libraries were prepared and quenched from high temperatures up to 700 °C using a novel quenching technique. It could be shown that a wide A1 solid solution region exists in the Cr-Co-Ni system. To validate the results obtained using thin-film materials libraries, bulk samples of selected compositions were prepared by arc melting, and the experimental data were additionally compared to results from DFT calculations. The computational results are in good agreement with the measured lattice parameters and elastic moduli. The lattice parameters increase with the addition of Co and Cr, with a more pronounced effect for the latter. The addition of ∼20 atom % Cr results in a similar hardening effect to that of the addition of ∼40 atom % Co.

Keywords: DFT; materials library; nanoindentation; superalloy; thin-film quenching.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alloys / chemistry*
  • Chromium / chemistry*
  • Cobalt / chemistry*
  • Density Functional Theory*
  • Nickel / chemistry*
  • Temperature

Substances

  • Alloys
  • Chromium
  • Cobalt
  • Nickel