Architectural Stabilization of a Gold(III) Catalyst in Metal-Organic Frameworks

Chem. 2020 Jan 9;6(1):142-152. doi: 10.1016/j.chempr.2019.10.022. Epub 2019 Nov 25.

Abstract

Unimolecular decomposition pathways are challenging to address in transition-metal catalysis and have previously not been suppressed via incorporation into a solid support. Two robust metal-organic frameworks (IRMOF-10 and bio-MOF-100) are used for the architectural stabilization of a structurally well-defined gold(III) catalyst. The inherent rigidity of these materials is utilized to preclude a unimolecular decomposition pathway - reductive elimination. Through this architectural stabilization strategy, decomposition of the incorporated gold(III) catalyst in the metal-organic frameworks is not observed; in contrast, the homogeneous analogue is prone to decomposition in solution. Stabilization of the catalyst in these metal-organic frameworks precludes leaching and enables recyclability, which is crucial for productive heterogeneous catalysis.