Characterization of Amyloid Structures in Aging C. Elegans Using Fluorescence Lifetime Imaging

J Vis Exp. 2020 Mar 27:(157):10.3791/61004. doi: 10.3791/61004.

Abstract

Amyloid fibrils are associated with a number of neurodegenerative diseases such as Huntington's, Parkinson's, or Alzheimer's disease. These amyloid fibrils can sequester endogenous metastable proteins as well as components of the proteostasis network (PN) and thereby exacerbate protein misfolding in the cell. There are a limited number of tools available to assess the aggregation process of amyloid proteins within an animal. We present a protocol for fluorescence lifetime microscopy (FLIM) that allows monitoring as well as quantification of the amyloid fibrilization in specific cells, such as neurons, in a noninvasive manner and with the progression of aging and upon perturbation of the PN. FLIM is independent of the expression levels of the fluorophore and enables an analysis of the aggregation process without any further staining or bleaching. Fluorophores are quenched when they are in close vicinity of amyloid structures, which results in a decrease of the fluorescence lifetime. The quenching directly correlates with the aggregation of the amyloid protein. FLIM is a versatile technique that can be applied to compare the fibrilization process of different amyloid proteins, environmental stimuli, or genetic backgrounds in vivo in a non-invasive manner.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Video-Audio Media

MeSH terms

  • Animals
  • Caenorhabditis elegans / metabolism*
  • Fluorescence*
  • Optical Imaging / methods*