Patterns in soft and biological matters

Philos Trans A Math Phys Eng Sci. 2020 May 15;378(2171):20200002. doi: 10.1098/rsta.2020.0002. Epub 2020 Apr 13.

Abstract

The issue is devoted to theoretical, computer and experimental studies of internal heterogeneous patterns, their morphology and evolution in various soft physical systems-organic and inorganic materials (e.g. alloys, polymers, cell cultures, biological tissues as well as metastable and composite materials). The importance of these studies is determined by the significant role of internal structures on the macroscopic properties and behaviour of natural and manufactured tissues and materials. Modern methods of computer modelling, statistical physics, heat and mass transfer, statistical hydrodynamics, nonlinear dynamics and experimental methods are presented and discussed. Non-equilibrium patterns which appear during macroscopic transport and hydrodynamic flow, chemical reactions, external physical fields (magnetic, electrical, thermal and hydrodynamic) and the impact of external noise on pattern evolution are the foci of this issue. Special attention is paid to pattern formation in biological systems (such as drug transport, hydrodynamic patterns in blood and pattern dynamics in protein and insulin crystals) and to the development of a scientific background for progressive methods of cancer and insult therapy (magnetic hyperthermia for cancer therapy; magnetically induced drug delivery in thrombosed blood vessels). The present issue includes works on pattern growth and their evolution in systems with complex internal structures, including stochastic dynamics, and the influence of internal structures on the external static, dynamic magnetic and mechanical properties of these systems. This article is part of the theme issue 'Patterns in soft and biological matters'.

Keywords: biophysical systems; heterogeneous materials; metastable and non-equilibrium states; patterns; phase transformations; soft matter.

MeSH terms

  • Hydrodynamics
  • Kinetics
  • Models, Molecular
  • Models, Theoretical*
  • Molecular Conformation
  • Physical Phenomena
  • Stochastic Processes