Photoinduced NO and HNO Production from Mononuclear {FeNO}6 Complex Bearing a Pendant Thiol

J Am Chem Soc. 2020 May 13;142(19):8649-8661. doi: 10.1021/jacs.9b13837. Epub 2020 Apr 29.

Abstract

Light triggers the formation of HNO from a metal-nitrosyl species, facilitated by an intramolecular pendant thiol proton. Two {FeNO}6 complexes (the Enemark-Felthan notation), [Fe(NO)(TMSPS2)(TMSPS2H)] (1, TMSPS2H2 = 2,2'-dimercapto-3,3'-bis(trimethylsilyl)diphenyl)phenylphosphine; H is a dissociable proton) with a pendant thiol and [Fe(NO)(TMSPS2)(TMSPS2CH3)] (2) bearing a pendant thioether, are spectroscopically and structurally characterized. Both complexes are highly sensitive to visible light. Upon photolysis, complex 2 undergoes NO dissociation to yield a mononuclear Fe(III) complex, [Fe(TMSPS2)(TMSPS2CH3)] (3). In contrast, the pendant SH of 1 can act as a trap for the departing NO radical upon irradiation, resulting in the formation of an intermediate A with an intramolecular [SH···ON-Fe] interaction. As suggested by computational results (density functional theory), the NO stretching frequency (νNO) is sensitive to the intramolecular interaction between the pendant ligand and the iron-bound NO, and a shift of νNO from 1833 (1) to 1823 cm-1 (A) is observed experimentally. Subsequent photolysis of the intermediate A results in HNO production and a thiyl group that then coordinates to the Fe center for the formation of [Fe(TMSPS2)2] (4). In contrast with the common acid-base coupling pathway, the HNO is not voluntarily yielded from 1 but rather is generated by the photopromoted pathway. The photogenerated HNO can further react with [MnIII(TMSPS3)(DABCO)] (TMSPS3H3 = (2,2'2''-trimercapto-3,3',3''-tris(trimethylsilyl)triphenylphosphine; DABCO = 1,4-diazabicyclo[2.2.2]octane) in organic media to yield anionic [Mn(NO)(TMSPS3)]- (5-) with a {MnNO}6 electronic configuration, whereas [MnIII(TMSPS3)(DABCO)] reacts with NO gas for the formation of a {MnNO}5 species, [Mn(NO)(TMSPS3)] (6). Effective differentiation of the formation of HNO from complex 1 with the pendant SH versus NO from 2 with the pendant SMe is achieved by the employment of [MnIII(TMSPS3)(DABCO)].

Publication types

  • Research Support, Non-U.S. Gov't