Rapid Gastrointestinal Passage May Protect Bombus terrestris from Becoming a True Host for Nosema ceranae

Appl Environ Microbiol. 2020 Jun 2;86(12):e00629-20. doi: 10.1128/AEM.00629-20. Print 2020 Jun 2.

Abstract

Pollination provided by managed honey bees as well as by all the wild bee species is a crucial ecosystem service contributing to the conservation of biodiversity and human food security. Therefore, it is not only the health status of honey bees but also the health status of wild bees that concerns us all. In this context, recent field studies suggesting interspecies transmission of the microsporidium parasite Nosema ceranae from honey bees (Apis mellifera) to bumblebees (Bombus spp.) were alarming. On the basis of these studies, N. ceranae was identified as an emerging infectious agent (EIA) of bumblebees, although knowledge of its impact on its new host was still elusive. In order to investigate the infectivity, virulence, and pathogenesis of N. ceranae infections in bumblebees, we performed controlled laboratory exposure bioassays with Bombus terrestris by orally inoculating the bees with infectious N. ceranae spores. We comprehensively analyzed the infection status of the bees via microscopic analysis of squash preparations, PCR-based detection of N. ceranae DNA, histology of Giemsa-stained tissue sections, and species-specific fluorescence in situ hybridization. We did not find any evidence for a true infection of bumblebees by N. ceranae Through a series of experiments, we ruled out the possibility that spore infectivity, spore dosage, incubation time, or age and source of the bumblebees caused these negative results. Instead, our results clearly demonstrate that no infection and production of new spores took place in bumblebees after they ingested N. ceranae spores in our experiments. Thus, our results question the classification of N. ceranae as an emerging infectious agent for bumblebees.IMPORTANCE Emerging infectious diseases (EIDs) pose a major health threat to both humans and animals. EIDs include, for instance, those that have spread into hitherto naive populations. Recently, the honey bee-specific microsporidium Nosema ceranae has been detected by molecular methods in field samples of bumblebees. This detection of N. ceranae DNA in bumblebees led to the assumption that N. ceranae infections represent an EID of bumblebees and resulted in speculations on the role of this pathogen in driving bumblebee declines. In order to address the issue of whether N. ceranae is an emerging infectious agent for bumblebees, we experimentally analyzed host susceptibility and pathogen reproduction in this new host-pathogen interaction. Surprisingly, we did not find any evidence for a true infection of Bombus terrestris by N. ceranae, questioning the classification of N. ceranae infections as EIDs of bumblebees and demonstrating that detection of microsporidian DNA does not equal detection of microsporidian infection.

Keywords: Bombus terrestris; Nosema ceranae; bumblebee; emerging infectious disease; experimental infection; microsporidia.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Bees / parasitology*
  • Gastrointestinal Tract / parasitology
  • Host-Pathogen Interactions*
  • Nosema / physiology*
  • Species Specificity