Changes in Serotonin Modulation of Glutamate Currents in Pyramidal Offspring Cells of Rats Treated With 5-MT during Gestation

Brain Sci. 2020 Apr 8;10(4):221. doi: 10.3390/brainsci10040221.

Abstract

Changes in stimuli and feeding in pregnant mothers alter the behavior of offspring. Since behavior is mediated by brain activity, it is expected that postnatal changes occur at the level of currents, receptors or soma and dendrites structure and modulation. In this work, we explore at the mechanism level the effects on Sprague-Dawley rat offspring following the administration of serotonin (5-HT) agonist 5-methoxytryptamine (5-MT). We analyzed whether 5-HT affects the glutamate-activated (IGlut) and N-methyl-D-aspartate (NMDA)-activated currents (IGlut, INMDA) in dissociated pyramidal neurons from the prefrontal cortex (PFC). For this purpose, we performed voltage-clamp experiments on pyramidal neurons from layers V-VI of the PFC of 40-day-old offspring born from 5-MT-treated mothers at the gestational days (GD) 11 to 21. We found that the pyramidal-neurons from the PFC of offspring of mothers treated with 5-MT exhibit a significant increased reduction in both the IGlut and INMDA when 5-HT was administered. Our results suggest that the concentration increase of a neuromodulator during the gestation induces changes in its modulatory action over the offspring ionic currents during the adulthood thus contributing to possible psychiatric disorders.

Keywords: 5-HT; 5-MT; NMDA; development; glutamate; hyperserotonemia; ionic currents; neurodevelopment; neuromodulation; neurotransmitters.