Maternal high-fat diet exaggerates diet-induced insulin resistance in adult offspring by enhancing inflammasome activation through noncanonical pathway of caspase-11

Mol Metab. 2020 Jul:37:100988. doi: 10.1016/j.molmet.2020.100988. Epub 2020 Apr 6.

Abstract

Objective: Maternal high-fat diet (HFD) has been shown to promote the development of insulin resistance (IR) in adult offspring; however, the underlying mechanisms remain unclear.

Methods: Eight-week-old female wild-type mice (C57BL/6) were fed either an HFD or a normal diet (ND), one week prior to mating, and the diet was continued throughout gestation and lactation. Eight-week-old male offspring of both groups were fed an HFD for 8 weeks.

Results: Offspring of HFD-fed dams (O-HFD) exhibited significantly impaired insulin sensitivity compared with the offspring of ND-fed dams (O-ND). The adipocyte size of the eWAT increased significantly in O-HFD and was accompanied by abundant crown-like structures (CLSs), as well as a higher concentration of interleukin 1β (IL-1β) in the eWAT. Treatment with an inflammasome inhibitor, MCC950, completely abrogated the enhanced IR in O-HFD. However, ex vivo caspase-1 activity in eWAT revealed no difference between the two groups. In contrast, noncanonical inflammasome activation of caspase-11 was significantly augmented in O-HFD compared with O-ND, suggesting that membrane pore formation, but not cleavage of pro-IL-1β by caspase-1, is augmented in O-HFD. To examine the membrane pore formation, we performed metabolic activation of bone marrow-derived macrophages (BMDMs). The percentage of pore formation assessed by ethidium bromide staining was significantly higher in BMDMs of O-HFD, accompanied by an enhanced active caspase-11 expression. Consistently, the concentration of IL-1β in culture supernatants was significantly higher in the BMDMs from O-HFD than those from O-ND.

Conclusions: These findings demonstrate that maternal HFD exaggerates diet-induced IR in adult offspring by enhancing noncanonical caspase-11-mediated inflammasome activation.

Keywords: Caspase-1; Caspase-11; Inflammasome; Insulin resistance; Interleukin-1β; Maternal high-fat diet.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Caspases / metabolism
  • Caspases, Initiator / metabolism*
  • Caspases, Initiator / physiology
  • Cytokines / metabolism
  • Diet, High-Fat / adverse effects
  • Female
  • Inflammasomes / metabolism*
  • Inflammasomes / physiology
  • Insulin / metabolism
  • Insulin Resistance / physiology*
  • Macrophages / metabolism
  • Male
  • Maternal Exposure
  • Mice
  • Mice, Inbred C57BL
  • Obesity
  • Pregnancy
  • Prenatal Exposure Delayed Effects / metabolism

Substances

  • Cytokines
  • Inflammasomes
  • Insulin
  • Casp4 protein, mouse
  • Caspases
  • Caspases, Initiator