Retinoic Acid Exerts Disease Stage-Dependent Effects on Pristane-Induced Lupus

Front Immunol. 2020 Mar 20:11:408. doi: 10.3389/fimmu.2020.00408. eCollection 2020.

Abstract

We previously showed that all-trans-retinoic acid (tRA), an active metabolite of vitamin A, exacerbated pre-existing autoimmunity in lupus; however, its effects before the development of autoimmunity are unknown. Here, using a pristane-induced model, we show that tRA exerts differential effects when given at the initiation vs. continuation phase of lupus. Unlike tRA treatment during active disease, pre-pristane treatment with tRA aggravated glomerulonephritis through increasing renal expression of pro-fibrotic protein laminin β1, activating bone marrow conventional dendritic cells (cDCs), and upregulating the interaction of ICAM-1 and LFA-1 in the spleen, indicating an active process of leukocyte activation and trafficking. Transcriptomic analysis revealed that prior to lupus induction, tRA significantly upregulated the expression of genes associated with cDC activation and migration. Post-pristane tRA treatment, on the other hand, did not significantly alter the severity of glomerulonephritis; rather, it exerted immunosuppressive functions of decreasing circulatory and renal deposition of autoantibodies as well as suppressing the renal expression of proinflammatory cytokines and chemokines. Together, these findings suggest that tRA differentially modulate lupus-associated kidney inflammation depending on the time of administration. Interestingly, both pre- and post-pristane treatments with tRA reversed pristane-induced leaky gut and modulated the gut microbiota in a similar fashion, suggesting a gut microbiota-independent mechanism by which tRA affects the initiation vs. continuation phase of lupus.

Keywords: glomerulonephritis; gut microbiota; kidney; lupus; pristane-induced; retinoic acid; stage-dependent.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Bacterial Translocation / drug effects
  • Contraindications, Drug
  • Dendritic Cells / immunology
  • Disease Models, Animal
  • Disease Progression
  • Drug Administration Schedule
  • Drug Synergism
  • Dysbiosis / complications
  • Female
  • Gastrointestinal Microbiome / drug effects
  • Gene Expression Regulation / drug effects
  • Glomerulonephritis / chemically induced
  • Glomerulonephritis / genetics
  • Glomerulonephritis / immunology
  • Glomerulonephritis / physiopathology
  • Immunosuppressive Agents / administration & dosage
  • Immunosuppressive Agents / therapeutic use
  • Lupus Erythematosus, Systemic / chemically induced*
  • Lupus Erythematosus, Systemic / genetics
  • Lupus Erythematosus, Systemic / immunology
  • Lupus Erythematosus, Systemic / physiopathology
  • Lupus Nephritis / chemically induced
  • Lupus Nephritis / genetics
  • Lupus Nephritis / immunology
  • Lupus Nephritis / physiopathology
  • Mice
  • Mice, Inbred BALB C
  • RNA / genetics
  • RNA / isolation & purification
  • RNA-Seq
  • Real-Time Polymerase Chain Reaction
  • Specific Pathogen-Free Organisms
  • Spleen / immunology
  • Spleen / pathology
  • Terpenes / pharmacology
  • Terpenes / toxicity*
  • Tretinoin / administration & dosage
  • Tretinoin / pharmacology
  • Tretinoin / therapeutic use
  • Tretinoin / toxicity*
  • Vitamin A / adverse effects

Substances

  • Immunosuppressive Agents
  • Terpenes
  • Vitamin A
  • pristane
  • Tretinoin
  • RNA