Construction of core-shell tecto dendrimers based on supramolecular host-guest assembly for enhanced gene delivery

J Mater Chem B. 2017 Nov 21;5(43):8459-8466. doi: 10.1039/c7tb02585h. Epub 2017 Oct 31.

Abstract

Design of dendrimer-based nanoarchitectures for enhanced gene delivery still remains a great challenge. Here, we report the design of core-shell tecto dendrimers using a supramolecular assembly approach for enhanced gene delivery applications. Firstly, β-cyclodextrin (CD)-modified generation 5 (G5) poly(amidoamine) (PAMAM) dendrimers (G5-CD) and adamantine (Ad)-modified generation 3 (G3) PAMAM dendrimers (G3-Ad) both having amine termini were synthesized. Through the supramolecular recognition of CD and Ad, G5-CD/Ad-G3 core-shell tecto dendrimers with a G5 core and G3 shell were formed. The formed G5-CD/Ad-G3 core-shell tecto dendrimers with a size of 8.4 nm possess good monodispersity, well-defined three-dimensional structure, and quite low cytotoxicity. Importantly, with the abundant amines on the surface, the core-shell tecto dendrimers are able to transfect the luciferase (Luc) gene with an efficiency 20 times and 170 times higher than the G5-CD and G3-Ad dendrimers, respectively. The higher gene transfection efficiency can also be qualitatively confirmed by transfection of plasmid DNA encoding enhanced green fluorescence protein. Our results suggest that the developed G5-CD/Ad-G3 core-shell tecto dendrimers may be used as a promising vehicle for enhanced gene transfection applications.