Triethylene glycol-modified iridium(iii) complexes for fluorescence imaging of Schistosoma japonicum

J Mater Chem B. 2017 Jul 7;5(25):4973-4980. doi: 10.1039/c7tb00662d. Epub 2017 Jun 5.

Abstract

Schistosomiasis, an infectious disease caused by the Schistosoma parasitic worm, presents a serious public health issue. To date, investigation of anti-Schistosomiasis drug mechanisms through fluorescence imaging remains challenging due to the lack of appropriate dyes as fluorescent probes. Phosphorescent Ir(iii) complexes have been attracting substantial attention among various classes of fluorophores given their excellent photophysical properties. Herein, four phosphorescent Ir(iii) complexes were synthesized, two of which contained a triethylene glycol (TEG) hydrophilic group. The phosphorescent emission range of the four complexes lay between 500 and 750 nm, and their quantum yields ranged from 0.031 to 0.146. Furthermore, under the experimental concentration conditions, the TEG-modified complexes had low cytotoxicity. Cell fluorescence labeling experiments indicated that the TEG-modified complexes had good membrane permeability. Finally, the TEG-modified complexes showed remarkable labeling effects in adult Schistosoma fluorescence imaging. Thus, TEG-modified Ir(iii) complexes could be used as a new class of bilharzial fluorescent probes.