Good's buffer derived highly emissive carbon quantum dots: excellent biocompatible anticancer drug carrier

J Mater Chem B. 2016 Apr 14;4(14):2412-2420. doi: 10.1039/c6tb00081a. Epub 2016 Mar 15.

Abstract

Here, a facile one-step approach has been developed for the synthesis of carbon quantum dots (CQDs) from Good's buffer. The as-synthesized CQDs emit a bright greenish blue coloured fluorescence after exposure to a 365 nm UV-lamp illumination. The bright fluorescence nature of the CQDs has proven them to be excellent probes for cellular imaging. The CQDs are highly biocompatible in nature, which has been validated by an MTT assay test. The in vitro MTT assay demonstrates a more than 95% survival rate when HEK293 (human embryonic kidney) and H357 (human oral squamous carcinoma) cells were treated with CQDs. The low cytotoxicity of Good's buffer derived CQDs opens the door to biomedical applications. The anticancer drug doxorubicin (DOX) was successfully loaded on the CQDs and their delivery efficiency to the target cells via in vitro treatment of cancerous cells was explored. The CQDs supported DOX showed a higher killing rate of the cancer cells compared to bare DOX due to its ease of internalization and efficient pH-triggered release inside the cells.