DNA protection against ultraviolet irradiation by encapsulation in a multilayered SiO2/TiO2 assembly

J Mater Chem B. 2014 Dec 28;2(48):8504-8509. doi: 10.1039/c4tb01552e. Epub 2014 Oct 29.

Abstract

DNA is protected against UV-induced damage by encapsulation in a core-shell-shell particulate construct. The DNA is hermetically sealed in SiO2 particles coated with TiO2. The TiO2 coating acts as a physical sunscreen and prevents high energy photons from damaging the nucleic acids. DNA can be recovered unharmed from the protection system with fluoride comprising buffers, and then directly analyzed using biochemical standard techniques (quantitative PCR, gel electrophoresis and Sanger sequencing). The coatings increase the DNA UV resistance by 42 times, which is equivalent to the increase in UV resistance obtained by bacteria during sporulation. The attenuation coefficient of the 20 nm titania layer is 1.8 106 cm-1 at 254 nm UV irradiation and optical attenuation is largely attributed to light scattering on the titania surface.