An intercompartmental enzymatic cascade reaction in channel-equipped polymersome-in-polymersome architectures

J Mater Chem B. 2014 May 14;2(18):2733-2737. doi: 10.1039/c3tb21849j. Epub 2014 Mar 27.

Abstract

Compartmentalization, as a design principle, is a prerequisite for the functioning of eukaryotic cells. Although cell mimics in the form of single vesicular compartments such as liposomes or polymersomes have been tremendously successful, investigations of the corresponding higher-order architectures, in particular bilayer-based multicompartment vesicles, have only recently gained attention. We hereby demonstrate a multicompartment cell-mimetic nanocontainer, built-up from fully synthetic membranes, which features an inner compartment equipped with a channel protein and a semi-permeable outer compartment that allows passive diffusion of small molecules. The functionality of this multicompartment architecture is demonstrated by a cascade reaction between enzymes that are segregated in separate compartments. The unique architecture of polymersomes, which combines stability with a cell-membrane-mimetic environment, and their assembly into higher-order architectures could serve as a design principle for new generation drug-delivery vehicles, biosensors, and protocell models.