Photodynamic assembly of nanoparticles towards designable patterning

Nanoscale Horiz. 2016 May 25;1(3):201-211. doi: 10.1039/c5nh00065c. Epub 2015 Dec 2.

Abstract

Recent advancements in nanotechnology have continued to stimulate the development of functional devices based on nanomaterials. However, the controllable assembly of these tiny nanomaterials into functional structures is still a big challenge for further applications; nowhere is this more obvious than in the field of nanodevices. Currently, despite the fact that self-assembly technologies have revealed great potential to reach this end, serious problems with respect to morphology control, designable assembly and even flexible patterning set huge obstacles to the fabrication of functional devices. Nowadays, in addition to self-assembly technologies that make use of interaction forces between different objects, photodynamic assembly (PDA) technology has emerged as a promising route to architect functional materials with the help of optical driving forces towards device fabrication. In this review, we summarize the recent developments in PDA technology for the designable patterning of nanoparticles (NPs). The basic fundamentals of PDA that resort to optical trapping (OT) and typical examples regarding far-field/near-field OT for the PDA of various NPs have been reviewed. In particular, femtosecond laser induced photodynamic assembly (FsL-PDA), which enables the designable patterning of NPs through a direct writing manner, has been introduced. Finally, the current challenges and future prospects of this dynamic field are discussed based on our own opinions.