Yolk-Shell Nanostructures: Syntheses and Applications for Lithium-Ion Battery Anodes

Nanomaterials (Basel). 2020 Apr 3;10(4):675. doi: 10.3390/nano10040675.

Abstract

Yolk-shell nanostructures have attracted tremendous research interest due to their physicochemical properties and unique morphological features stemming from a movable core within a hollow shell. The structural potential for tuning inner space is the focal point of the yolk-shell nanostructures in a way that they can solve the long-lasted problem such as volume expansion and deterioration of lithium-ion battery electrodes. This review gives a comprehensive overview of the design, synthesis, and battery anode applications of yolk-shell nanostructures. The synthetic strategies for yolk-shell nanostructures consist of two categories: templating and self-templating methods. While the templating approach is straightforward in a way that the inner void is formed by removing the sacrificial layer, the self-templating methods cover various different strategies including galvanic replacement, Kirkendall effect, Ostwald ripening, partial removal of core, core injection, core contraction, and surface-protected etching. The battery anode applications of yolk-shell nanostructures are discussed by dividing into alloying and conversion types with details on the synthetic strategies. A successful design of yolk-shell nanostructures battery anodes achieved the improved reversible capacity compared to their bare morphologies (e.g., no capacity retention in 300 cycles for Si@C yolk-shell vs. capacity fading in 10 cycles for Si@C core-shell). This review ends with a summary and concluding remark yolk-shell nanostructures.

Keywords: battery anode; nanomaterial; self-templating; templating; yolk–shell.

Publication types

  • Review