Anti-β2-glycoprotein I and anti-phosphatidylserine/prothrombin antibodies exert similar pro-thrombotic effects in peripheral blood monocytes and endothelial cells

Auto Immun Highlights. 2019 Apr 6;10(1):3. doi: 10.1186/s13317-019-0113-9. eCollection 2019 Dec.

Abstract

Purpose: The introduction of the anti-phosphatidylserine/prothrombin (aPS/PT) antibodies among the routinely investigated anti-phospholipid (aPL) antibodies led to an improvement in anti-phospholipid syndrome (APS) laboratory diagnostic performance; however, their pathogenic mechanism is still substantially undefined. To support clinical data and future inclusion as possible new criteria antibodies, we designed a head-to-head study to directly compare the procoagulant effects sustained in vitro by aPS/PT to those sustained by anti-β2-glycoprotein I (aβ2GpI) domain 1-specific antibodies.

Methods: Blood donors-derived monocytes and endothelial cells (HUVEC) were stimulated with lipopolysaccharides (LPS) alone or in combination with the IgG fractions isolated from the serum of six APS patients, positive only for aβ2GpI or for aPS/PT antibodies. As control, cells were incubated with LPS plus the IgG isolated from blood donors. Tissue factor (TF) mRNA expression was measured after four hours incubation by real-time PCR. Nitric oxide (NO) levels were measured in cells supernatant after 16 h incubation by colorimetric assay.

Results: aPS/PT and aβ2GpI IgG antibodies fractions showed comparable ability to enhance LPS-induced TF mRNA expression, either in monocytes and in HUVEC. Compared to LPS alone, we found that NO levels are strongly overproduced in HUVEC treated with LPS plus aβ2GpI and aPS/PT IgG fractions.

Conclusions: Our data support the significant and independent role of aPS/PT in the pathogenesis of the thrombotic events in APS patients, possibly adding new light to the therapeutic management of cases characterized by the sole presence of aPS/PT IgG antibodies.

Keywords: Anti-phosphatidylserine/prothrombin; Anti-phospholipid syndrome; Anti-β2-glycoprotein I; Nitric oxide; Tissue factor.