Ecological risk assessment of heavy metal contamination in mangrove habitats, using biochemical markers and pollution indices: A case study of Avicennia marina L. in the Rabigh lagoon, Red Sea

Saudi J Biol Sci. 2020 Apr;27(4):1174-1184. doi: 10.1016/j.sjbs.2020.02.004. Epub 2020 Feb 11.

Abstract

Contamination of mangrove ecosystems, including those of the Red Sea area, has caused serious concern globally. Spatial distribution of heavy metals and their bioaccumulation in one of the common mangrove plants of Saudi Arabia, Avicennia marina L., was evaluated in 8 stations at the Rabigh lagoon to assess the ecological risks due to heavy metal contamination. Among all the heavy metals, Fe concentration was recorded highest (8939.38 ± 312.63 mg/kg) at station S4. Contamination factor (CF) values for all heavy metals determined in this study were recorded in ascending order as Cu < Cr < Mn < Zn < Fe < Ni < Pb < Cd, with the pollution load index pattern recorded in descending order as S6 > S4 > S3 > S5 > S7 > S1 > S8 > S2. Bio-concentration factor (BCF) was <1 for all the heavy metals and there was a positive correlation between the antioxidants and lead (Pb), which can be a result of the ability of A. marina to exclude or detoxify this metal by its mechanism of exclusion or detoxification. A significant correlation existed between the heavy metals concentration in sediment and A. marina leaves at one combination or the other, except for Cu and Cd, which do not correlate with any other metal concentration. The information provided in the present study can be used in the monitoring and measurement of heavy metal pollution in marine ecosystems or other aquatic environments, to prevent several ecological risks to the mangrove ecosystem.

Keywords: Biochemical markers; Ecological risk; Heavy metal; Mangrove; Pollution; Rabigh.