Ag NPs-Assisted Synthesis of Stable Cu NPs on PET Fabrics for Antibacterial and Electromagnetic Shielding Performance

Polymers (Basel). 2020 Apr 2;12(4):783. doi: 10.3390/polym12040783.

Abstract

In this study, Cu/Ag/polydopamine (PDA)/polyester (PET) fabrics were fabricated for multi-functional textiles. The PET fabrics were firstly modified by dopamine to form a polydopamine (PDA) layer on the fiber surface, then Ag nanoparticles (Ag NPs) were anchored on fiber surface through chelation between PDA and Ag+ ions, and the Ag NPs were further used as catalytic seeds for in situ reduction of Cu nanoparticles (Cu NPs). The surface morphology, chemistry, and crystalline structure of the prepared PET fabrics were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD). As expected, Cu NPs were evenly dispersed on the surface of fibers. The Cu/Ag/PDA/PET fabrics showed good antibacterial property against Escherichia coli and exhibited excellent electromagnetic interference (EMI) shielding ability. The Cu/Ag/PDA/PET fabrics with high performance antibacterial and EMI shielding properties can be applied as functional protective textiles.

Keywords: Ag NPs; Cu NPs; PET fabrics; antibacterial; electromagnetic interference shielding; polydopamine.