Fabrication of large scale uniform copper-island thin film for ultrasensitive surface enhanced Raman scattering

Nanotechnology. 2020 Jul 24;31(30):305302. doi: 10.1088/1361-6528/ab86eb. Epub 2020 Apr 6.

Abstract

Nanostructured metals with designable and controllable structures have received increasing attention in surface enhanced Raman scattering (SERS) due to the single molecular detection limit. Great challenges still remain in creating large scale substrates with high-density 'hotspots' to provide a uniform and stable enhancement of Raman signals. Here, we fabricated a copper island thin film over an 80 cm2 scale substrate with tunable particle sizes by combining sputtering with dealloying processes. The island size can be tailored from 150 nm to 370 nm by controlling parameters and etching conditions and possesses an optimized surface morphology structure. The detection limit of crystal violet (CV) molecules reached 0.1 pM. Meanwhile, the copper island thin film presents good homogeneity and stability. Our method is promising to repeatedly fabricate novel metal SERS substrates on a large scale with standard properties for sensing applications.