(20S)G-Rh2 Inhibits NF-κB Regulated Epithelial-Mesenchymal Transition by Targeting Annexin A2

Biomolecules. 2020 Mar 31;10(4):528. doi: 10.3390/biom10040528.

Abstract

(1) Background: Epithelial-mesenchymal transition (EMT) is an essential step for cancer metastasis; targeting EMT is an important path for cancer treatment and drug development. NF-κB, an important transcription factor, has been shown to be responsible for cancer metastasis by enhancing the EMT process. Our previous studies showed that (20S)Ginsenoside Rh2 (G-Rh2) inhibits NF-κB activity by targeting Anxa2, but it is still not known whether this targeted inhibition of NF-κB can inhibit the EMT process. (2) Methods: In vivo (20S)G-Rh2-Anxa2 interaction was assessed by cellular thermal shift assay. Protein interaction was determined by immuno-precipitation analysis. NF-κB activity was determined by dual luciferase reporter assay. Gene expression was determined by RT-PCR and immuno-blot. EMT was evaluated by wound healing and Transwell assay and EMT regulating gene expression. (3) Results: Anxa2 interacted with the NF-κB p50 subunit, promoted NF-κB activation, then accelerated mesenchymal-like gene expression and enhanced cell motility; all these cellular processes were inhibited by (20S)G-Rh2. In contrast, these (20S)G-Rh2 effect were completely eliminated by overexpression of Anxa2-K301A, an (20S)G-Rh2-binding-deficient mutant of Anxa2. (4) Conclusion: (20S)G-Rh2 inhibited NF-κB activation and related EMT by targeting Anxa2 in MDA-MB-231 cells.

Keywords: (20S)G-Rh2; Anxa2; NF-κB; epithelial-mesenchymal transition.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Annexin A2 / metabolism*
  • Antineoplastic Agents / pharmacology*
  • Cell Line, Tumor
  • Cell Movement / drug effects
  • Dose-Response Relationship, Drug
  • Epithelial-Mesenchymal Transition / drug effects*
  • Ginsenosides / pharmacology*
  • Humans
  • NF-kappa B / metabolism*
  • Neoplasm Invasiveness

Substances

  • Annexin A2
  • Antineoplastic Agents
  • Ginsenosides
  • NF-kappa B
  • ginsenoside Rh2