Electronic Modulation of Nickel Disulfide toward Efficient Water Electrolysis

Small. 2020 Apr;16(17):e1905885. doi: 10.1002/smll.201905885. Epub 2020 Apr 3.

Abstract

Developing highly efficient earth-abundant nickel-based compounds is an important step to realize hydrogen generation from water. Herein, the electronic modulation of the semiconducting NiS2 by cation doping for advanced water electrolysis is reported. Both theoretical calculations and temperature-dependent resistivity measurements indicate the semiconductor-to-conductor transition of NiS2 after Cu incorporation. Further calculations also suggest the advantages of Cu dopant to cathodic water electrolysis by bringing Gibbs free energy of H adsorption at both Ni sites and S sites much closer to zero. It is noteworthy that water dissociation on Cu-doped NiS2 (Cu-NiS2 ) surface is even more favorable than those on NiS2 and Pt(111). Thus, the prepared Cu-NiS2 shows noticeably improved performance toward alkaline hydrogen and oxygen evolution reactions (HER and OER). Specifically, it requires merely 232 mV OER overpotential to drive 10 mA cm-2 ; in parallel with Tafel slopes of 46 mV dec-1 . Regarding HER, an onset overpotential of only 68 mV is achieved. When integrated as both electrodes for water electrolysis, Cu-NiS2 needs only 1.64 V to drive 10 mA cm-2 , surpassing the state-of-the-art Ir/C-Pt/C couple (1.71 V). This work opens up an avenue to engineer low-cost and earth-abundant catalysts performing on par with the noble-metal-based one for water splitting.

Keywords: cation tuning; electrocatalysis; electronic modulation; hydrogen generation; overall water splitting; water electrolysis; water splitting.