Electromyographic activity in the gluteus medius, gluteus maximus, biceps femoris, vastus lateralis, vastus medialis and rectus femoris during the Monopodal Squat, Forward Lunge and Lateral Step-Up exercises

PLoS One. 2020 Apr 1;15(4):e0230841. doi: 10.1371/journal.pone.0230841. eCollection 2020.

Abstract

The Monopodal Squat, Forward Lunge and Lateral Step-Up exercises are commonly performed with one's own body weight for rehabilitation purposes. However, muscle activity evaluated using surface electromyography has never been analyzed among these three exercises. Therefore, the objectives of the present study were to evaluate the amplitude of the EMG activity of the gluteus medius, gluteus maximus, biceps femoris, vastus lateralis, vastus medialis and rectus femoris muscles in participants performing the Lateral Step-Up, Forward Lunge and Monopodal Squat exercises. A total of 20 physically active participants (10 men and 10 women) performed 5 repetitions at 60% (5 repetition maximum) in each of the evaluated exercises. The EMG amplitude was calculated in percentage of the maximum voluntary contraction. The Monopodal Squat exercise showed a higher EMG activity (p ≤ 0.001) in relation to the Lateral Step-Up and Forward Lunge exercises in all of the evaluated muscles (d > 0.6) except for the rectus femoris. The three exercises showed significantly higher EMG activity in all of the muscles that were evaluated in the concentric phase in relation to the eccentric one. In the three evaluated exercises, vastus lateralis and vastus medialis showed the highest EMG activity, followed by gluteus medius and gluteus maximus. The Monopodal Squat, Forward Lunge and Lateral Step-Up exercises not only are recommended for their rehabilitation purposes but also should be recommended for performance objectives and strength improvement in the lower limbs.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Electromyography
  • Exercise / physiology*
  • Exercise Therapy*
  • Female
  • Hamstring Muscles / physiology
  • Humans
  • Lower Extremity / physiology*
  • Male
  • Muscle, Skeletal / physiology*
  • Quadriceps Muscle / physiology
  • Young Adult

Grants and funding

This work was supported by the Proyectos I+D +I Ministerio de Economía y Competitividad. Gobierno de España. Referencia: DEP 2016-80296-R (AEI/FEDER, UE).