High-energy self-mode-locked Cr:forsterite laser near the soliton blowup threshold

Opt Lett. 2020 Apr 1;45(7):1890-1893. doi: 10.1364/OL.384850.

Abstract

At the level of peak powers needed for a Kerr-lens mode-locked operation of solid-state soliton short-pulse lasers, a periodic perturbation induced by spatially localized pulse amplification in a laser cavity can induce soliton instability with respect to resonant dispersive-wave radiation, eventually leading to soliton blowup and pulse splitting of the laser output. Here, we present an experimental study of a high-peak-power self-mode-locking Cr:forsterite laser, showing that, despite its complex, explosion-like buildup dynamics, this soliton blowup can be captured and quantitatively characterized via an accurate cavity-dispersion- and gain-resolved analysis of the laser output. We demonstrate that, with a suitable cavity design and finely tailored balance of gain, dispersion, and nonlinearity, such a laser can be operated in a subcritical mode, right beneath the soliton blowup threshold, providing an efficient source of sub-100-fs 15-20 MHz repetition-rate pulses with energies as high as 33 nJ.