22.7 W mid-infrared supercontinuum generation in fluorotellurite fibers

Opt Lett. 2020 Apr 1;45(7):1882-1885. doi: 10.1364/OL.383642.

Abstract

In this Letter, we demonstrate 22.7 W mid-infrared (MIR) supercontinuum (SC) generation in all-solid fluorotellurite fibers. All-solid fluorotellurite fibers based on ${{\rm TeO}_2} {\text -} {{\rm BaF}_2}{\text -}{{\rm Y}_2}{{\rm O}_3}$TeO2-BaF2-Y2O3 and ${{\rm TeO}_2}$TeO2 modified fluoroaluminate glasses are fabricated by using a rod-in-tube method. By using a 0.6 m long fluorotellurite fiber with a core diameter of 11 µm as the nonlinear medium and a high-power 1.93-2.5 µm SC fiber laser as the pump source, we obtain 22.7 W SC generation from 0.93 to 3.95 µm in the fiber for a pump power of 39.7 W. The 10 dB bandwidth is about 1633 nm, and the corresponding spectral range is from 1890 to 3523 nm. The optical-to-optical conversion efficiency is about 57.2%. Our results show that all-solid fluorotellurite fibers are promising nonlinear media for constructing high-power MIR SC light sources.