Compact Open-Path Sensor for Fast Measurements of CO2 and H2O using Scanned-Wavelength Modulation Spectroscopy with 1f-Phase Method

Sensors (Basel). 2020 Mar 30;20(7):1910. doi: 10.3390/s20071910.

Abstract

We report here the development of a compact, open-path CO2 and H2O sensor based on the newly introduced scanned-wavelength modulation spectroscopy with the first harmonic phase angle (scanned-WMS-θ1f) method for high-sensitivity, high temporal resolution, ground-based measurements. The considerable advantage of the sensor, compared with existing commercial ones, lies in its fast response of 500 Hz that makes this instrument ideal for resolving details of high-frequency turbulent motion in exceptionally dynamic coastal regions. The good agreement with a commercial nondispersive infrared analyzer supports the utility and accuracy of the sensor. Allan variance analysis shows that the concentration measurement sensitivities can reach 62 ppb CO2 in 0.06 s and 0.89 ppm H2O vapor in 0.26 s averaging time. Autonomous field operation for 15-day continuous measurements of greenhouse gases (CO2/H2O) was performed on a shore-based monitoring tower in Daya Bay, demonstrating the sensor's long-term performance. The capability for high-quality fast turbulent atmospheric gas observations allow the potential for better characterization of oceanographic processes.

Keywords: atmospheric gases; carbon dioxide; costal environment; in-situ sensors; rapid detection; water vapor.