Structural Ordering Supremacy on the Oxygen Reduction Reaction of Layered Iron-Perovskites

Inorg Chem. 2020 Apr 20;59(8):5529-5537. doi: 10.1021/acs.inorgchem.0c00171. Epub 2020 Apr 1.

Abstract

Layered perovskites of the Gd0.8-xBa0.8Ca0.4+xFe2O5+δ system show oxygen reduction reaction (ORR) activity. The layered crystal structure of these oxides is established by the interplay of the Gd3+, Ba2+, and Ca2+ locations with the ordering of the coordination polyhedra of the Fe3+ cations. Substitution of Gd3+ by Ca2+ increases the oxygen deficiency that is accommodated by the formation of layers of FeO5-squared pyramids intercalated with A-O layers containing mainly Gd3+. The presence of FeO5-squared pyramids in the crystal structure promotes the oxygen diffusion and then the ORR activity. Therefore, GdBa2Ca2Fe5O13 is the oxide of the system which presents lower area specific resistance (ASR) values when it is applied as an electrode in symmetrical cells using Ce0.9Gd0.1O2-δ as an electrolyte.