Size-dependent optical properties of periodic arrays of semiconducting nanolines

Opt Express. 2020 Mar 2;28(5):6781-6793. doi: 10.1364/OE.386964.

Abstract

We study the size-dependent optical properties of periodic arrays of semiconducting nanolines in the near-infrared to near-ultraviolet spectral range, where the absorption of the semiconductor increases. Using band structure calculations, we demonstrate that specific dimensions allow the slow down of the light, resulting in an enhanced absorption as compared to bulk material once the extinction coefficient of the semiconductor becomes comparable to its refractive index. Further, the refractive properties of the arrays can be tailored beyond the values of the constituting materials when the extinction coefficient of the semiconductor exceeds its refractive index. To confirm our theoretical findings, we propose a simple semi-analytical model for the light interactions with such structures and validate it with experimental reflectance spectra collected on arrays for the next-generation transistors.