Theoretical analysis of a white-light LED array based on a GaN nanorod structure

Appl Opt. 2020 Mar 10;59(8):2345-2351. doi: 10.1364/AO.387059.

Abstract

Based on the experimentally demonstrated In content distribution in the InGaN/GaN quantum wells on a two-section GaN nanorod (NR) sidewall, a white-light light-emitting diode (LED) without phosphor is designed and simulated. Following the dependencies of the In diffusion length and incorporation ratio on NR geometric variables of a theoretical model, the height, radius, and tapering section geometry of the GaN NR are designed for controlling the relative intensities of a blue and a yellow emission component to mix into white light. The higher-In upper section of the NR is first excited to emit a relatively stronger yellow component when injection current is low. As the injection current increases, more current spreads into the lower-In lower section, eventually leading to a stronger blue emission component. The proposed NR LED structure provides an alternative solution for phosphor-free white-light generation.