Fiber laser spot welding of molybdenum alloy in a hyperbaric environment

Opt Express. 2020 Mar 16;28(6):7843-7857. doi: 10.1364/OE.385079.

Abstract

The effect of the growth of ambient pressures on the penetration of laser welded molybdenum (Mo) alloy was explored. It was found that when ambient pressure rose from 0.1 MPa to 1.8 MPa, the penetration of base metal (BM) was significantly reduced, which was only 17% of that obtained under ambient pressure of 0.1 MPa. Moreover, the mechanism underlying the significant reduction of the penetration of BM was analyzed. At first, by using a high-resolution scanning electron microscope (SEM), the size and the number of nano-sized metallic particles generated during laser welding under different ambient pressures were surveyed. Furthermore, the scattering and absorption of the nano-sized metallic particles for laser energy under different ambient pressures were investigated; afterwards, by applying a high-speed camera and a spectrometer, the transient behaviors and spectral signals of plasmas during fiber laser spot welding under different ambient pressures were monitored. On this basis, the inverse bremsstrahlung absorption of plasmas for laser energy under different ambient pressures was explored; finally, fiber laser spot welding test was carried out on glass/metal composite samples under different ambient pressures to survey the influence of the change of ambient pressure on dynamic behaviors of the molten pool during the welding.