Using Microcystin Gene Copies to Determine Potentially-Toxic Blooms, Example from a Shallow Eutrophic Lake Peipsi

Toxins (Basel). 2020 Mar 26;12(4):211. doi: 10.3390/toxins12040211.

Abstract

Global warming, paired with eutrophication processes, is shifting phytoplankton communities towards the dominance of bloom-forming and potentially toxic cyanobacteria. The ecosystems of shallow lakes are especially vulnerable to these changes. Traditional monitoring via microscopy is not able to quantify the dynamics of toxin-producing cyanobacteria on a proper spatio-temporal scale. Molecular tools are highly sensitive and can be useful as an early warning tool for lake managers. We quantified the potential microcystin (MC) producers in Lake Peipsi using microscopy and quantitative polymerase chain reaction (qPCR) and analysed the relationship between the abundance of the mcyE genes, MC concentration, MC variants and toxin quota per mcyE gene. We also linked environmental factors to the cyanobacteria community composition. In Lake Peipsi, we found rather moderate MC concentrations, but microcystins and microcystin-producing cyanobacteria were widespread across the lake. Nitrate (NO3-) was a main driver behind the cyanobacterial community at the beginning of the growing season, while in late summer it was primarily associated with the soluble reactive phosphorus (SRP) concentration. A positive relationship was found between the MC quota per mcyE gene and water temperature. The most abundant variant-MC-RR-was associated with MC quota per mcyE gene, while other MC variants did not show any significant impact.

Keywords: Lake Peipsi; MC quota; cyanobacteria; mcyE; microcystins; qPCR.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism*
  • Chromatography, High Pressure Liquid
  • Cyanobacteria / genetics*
  • Cyanobacteria / growth & development
  • Cyanobacteria / metabolism
  • Environmental Monitoring*
  • Gene Dosage*
  • Gene Expression Regulation, Bacterial
  • Genetic Markers
  • Harmful Algal Bloom*
  • Lakes / microbiology*
  • Microcystins / genetics*
  • Microcystins / metabolism
  • Nitrates / metabolism
  • Peptide Synthases / genetics
  • Peptide Synthases / metabolism*
  • Phosphorus / metabolism
  • Polymerase Chain Reaction
  • Ribotyping
  • Spectrometry, Mass, Electrospray Ionization
  • Temperature
  • Water Microbiology*

Substances

  • Bacterial Proteins
  • Genetic Markers
  • Microcystins
  • Nitrates
  • Phosphorus
  • microcystin
  • Peptide Synthases