Novosphingobium silvae sp. nov., isolated from subtropical forest soil

Int J Syst Evol Microbiol. 2020 Apr;70(4):2901-2906. doi: 10.1099/ijsem.0.004115. Epub 2020 Mar 25.

Abstract

A novel bacterial strain, designated FGD1T, was isolated from subtropical forest soil of the Nanling National Forest Park located in Guangdong Province, P.R. China. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain FGD1T was most closely related to Novosphingobium lindaniclasticum DSM 25049T (98.8 %), followed by N. barchaimii DSM 25411T (98.7 %), N. guangzhouense DSM 32207T (98.2 %), N. panipatense DSM 22890T (98.1 %) and other species of Novosphingobium (<98 %). The draft genome sequence was 4.58 Mb in length with a G+C content of 65.1 mol%. The calculated average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strain FGD1T and closely related type strains were 77.7‒79.6 % and 21.7-22.9 %, respectively. Major fatty acids were summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c), summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), C14 : 0 2-OH and C16 : 0. The predominant respiratory quinone was ubiquinone 10 and the major polyamine was spermidine. Polar lipids were composed of sphingoglycolipid, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylmethylethanolamine, diphosphatidylglycerol, an unidentified phospholipid and lipid. The polyphasic taxonomic results indicated that strain FGD1T represents a novel species of the genus Novosphingobium, for which the name Novosphingobium silvae sp. nov. is proposed. The type strain is FGD1T (=GDMCC 1.1761T=KACC 21283T).

Keywords: Novosphingobium silvae; polyphasic taxonomy; subtropical forest soil; whole genome sequence.

MeSH terms

  • Bacterial Typing Techniques
  • Base Composition
  • China
  • DNA, Bacterial / genetics
  • Fatty Acids / chemistry
  • Forests*
  • Nucleic Acid Hybridization
  • Phospholipids / chemistry
  • Phylogeny*
  • RNA, Ribosomal, 16S / genetics
  • Sequence Analysis, DNA
  • Soil Microbiology*
  • Sphingomonadaceae / classification*
  • Sphingomonadaceae / isolation & purification
  • Ubiquinone / analogs & derivatives
  • Ubiquinone / chemistry

Substances

  • DNA, Bacterial
  • Fatty Acids
  • Phospholipids
  • RNA, Ribosomal, 16S
  • Ubiquinone
  • coenzyme Q10